

Jet Fire Protection – Field Erected, Bullet, and Trailer Liquefied Natural Gas Tanks

Jet Fires

• What is a Jet Fire?

- A turbulent diffusion flame, released with significant momentum at temperatures up to 2,012°F.
- Can arise from the release of gaseous, flashing liquid or pure liquid, including LNG.
- Enhanced due to pressure >40psi behind the release.
- LNG under pressure presents a higher risk of a serious jet fire in a leak or rupture scenario.

The Heat Flux Contour Plot above shows the effects of a 21kg/s jet fire on an LNG tank. According to a DNV report done on the effect of thermal stresses on LNG tanks, the maximum heat flux experienced is 277,597 W/m2 or approximately 87,998 BTU/ft2-hr.

Failure Time of Steel When Exposed to Jet Fire

- Pressurized process areas adjacent to LNG tanks increase the risk of the tank's exposure to jet fires.
- If Emergency Shutdowns devices or fire protection systems fail due to mechanical or human error, LNG tanks can be exposed to jet fires for extended periods of time.
- The example here shows the results of a DNV test where jet fire temperature was hot enough to fail steel at 6.5 minutes!

Temperatures resulting in structural failure of an LNG trailer at 6.5 minutes under Spray/Jet Fire conditions. According to a DNV report done on the effect of thermal stresses on LNG tanks, the maximum temperature is seen to be 1479°C (melting point of ASTM A131 Steel) at the metal contact point which is the center of the graphic.

FERC, ASME, and NFPA Guidance with Respect to Jet Fires

FERC's requirements for fire protection for vessels and tanks

"Fire protection [should be provided] for pressure vessels within 4,000 BTU/ft2-hr, steel atmospheric tanks within 4,900 BTU/ft2-hr, and concrete atmospheric tanks within 10,000 BTU/ft2-hr".

ASME Boiler and Pressure Vessel Code (BPVC) and ASME B31.1 Process Piping

" "prolonged exposure of 4,900 BTU/ft2-hr can result in temperatures that results in a 50% loss in material strength, which would put it above the allowable stress limits and yield points of that material."

From NFPA 59A-2019 Section A.6.6.4

- "Carbon structural steels begin to have a noticeable loss of strength at 570°F 650°F, lose approximately one-third of strength at 840 °F 900°F, and lose approximately one-half of strength at 1,000°F 1,100°F. The temperatures associated with one-half and one-third losses of strength correspond to when structural steel begins to exceed allowable stresses and yield strengths and suffers possible structural damage based on allowable stress/strength designs in structural and mechanical design codes."
- "The temperatures associated with losses of strength [mentioned above] would correspond to [thermal fluxes] of approximately 2,000 Btu/ft2hr, 4,900 Btu/ft2-hr, and 7,750 Btu/ft2-hr, respectively."
- NFPA would seems to guide Field Erected Tank protection at thermal fluxes of 4,900 Btu/ft2-hr.

Jet Fire Protection Systems

Primary

- Emergency Shut-Off Device (ESD) Controls
- Secondary/Complementary
 - Deluge Systems / High Expansion Foam Pool Fire Protection
 - Shrouding Deterrent to Jet Fire At Source
 - Thermal Barrier Deterrent to Jet Fire At Target

Jet Fire Protection Systems – Deluge

- What is a Deluge System?
 - An unpressurized dry piping system with open sprinkler heads, directly connected to a water supply.
 - A deluge valve is activated by a heat or smoke detector and releases water, to lower the temperature of the tank.
- Are there issues with a Deluge system?
 - Mechanical failure to the system would result in little to no protection to an LNG tank in the event of a jet fire.
 - Requires large amounts of water and all sprinklers release at once, while only cooling the tank. Does not extinguish a jet fire.
 - Time of protection is limited to the water supply.

Jet Fire Protection Systems – Shrouding

• What is Shrouding?

- A stainless steal barrier placed around piping to cause LNG to pool in the event of a leak.
- Are there issues with Shrouding?
 - Eliminates the possibility of visual inspection.
 - Difficult and high cost to install on existing piping.
 - Makes maintenance more difficult.
 - Shrouding must be removed before work can be done on piping or instrumentation.

Shrouding at LNG process area next to LNG storage tank

Jet Fire Protection Systems – Thermal Barrier

What is a Thermal Barrier?

- Physical barrier between a jet fire from an LNG process area under pressure and an area of desired protection including an LNG tank, shown here, or an LNG truck loading area.
- Are there issues with a Thermal Barrier?
 - Low cost of installation and maintenance .
 - Provides up to 3 hours of protection dependent on paint thickness.
 - Needs protection from cold weather cracking.

A proposed thermal barrier "in RED" between an LNG tank and LNG process area.

Jet Fire Protection Systems – Thermal Barrier Details

• What is a type of Thermal Barrier?

- Meets ISO 22899-1 test standard.
- ¼" stainless steel plate with a paint-on coating of two products designed to withstand an LNG release before the ignition of a jet fire.
- First part is a cold barrier that adheres to a stainlesssteel plate and provides protection before ignition.
- Second part is thermal protection for the temperatures associated with jet fires.
- Additionally, a weatherproofing sealant is applied to resist cold weather cracking.
- Application at different thicknesses will provide varying levels of protection against LNG release and jet fire for potentially multiple hours.

The graph above shows the thermal protection provided by paint-on coating, using a DNV report done on the effect of thermal stresses on LNG tanks and data extrapolated from vendor testing. A protective base paint thickness of 0.3" reduces the temperature behind a steel barrier to 752 °F.

Representative proformance based off extrapolated Vendor test data

Jet Fire Protection Systems – ISO 22899-1 Test Standard

Overview

- Test is designed to give an indication of how passive fire protection material will withstand to a jet fire.
- Temperature is measured throughout the testing from the front and back of the fire protective barrier with thermocouples.

Flame Properties

- Propane is delivered at a steady flow rate of 0.66 lb./s or greater as a vapor without a liquid fraction.
- Propane has a higher BTU generation than LNG and therefore burns hotter.
- Thermal Flux
 - The test will produce a heat flux between 79,250BTU/ft2 and 101,440BTU/ft2 and the test notes that this flux is of "medium scale".

Jet fire test done on 2-part paint system, being performed to ISO 22899-1 test standards.

Jet Fire Protection Recommendation – Thermal Barrier

- Barrier can be installed as new infrastructure, or it may be installed with minimal modifications, utilize any existing ice-shield infrastructure.
- The product manufacturer has a standard warranty of 5 to 10 years, and the paint has a projected useful life of 20+ years.
- The 2-part paint system requires minimal yearly maintenance.
 - It is resilient coating that is difficult to chip or damage, only substantial damage resulting in missing chinks of paint or cracks down to the steel will require recoating.
 - Small and medium size cracks are not required to be fixed, though should be resealed due to possible water damage.
- Tank Failures due to jet fire could be potentially extended from 6 minutes to 2 hours!
 - Benefit to the protection of life safety.
 - Provide time to react with alternative preventative measures.

